

Thermochimica Acta 249 (1995) 295-300

thermochimica acta

Low temperature intermediate phases in the formation of $YBa₂Cu₃O_{7-x} superconductor$

S. Petriček, N. Bukovec, P. Bukovec*

Department of Chemistry, University of Ljuhljana, P.O. Box 537, 61001 Ljuhljana, Slovenia

Received 13 December 1993; accepted 13 June 1994

Abstract

The synthesis of YBa₂Cu₃O_{7-x} from Y₂O₃, BaO₂ and CuO has been studied in the temperature range **330-930°C** in order to identify the intermediate phases which appear prior to the formation of the Y-123 compound. The first reaction between BaO, and CuO in the mixture begins at $\approx 330^{\circ}\text{C}$. Barium cuprates of composition BaCuO_{2+x} ($0 \le x \le 0.5$) are formed, with $BaCuO₂$ as the most stable phase. Ba $O₂$ is mainly consumed in these reactions up to $\approx 750^{\circ}$ C. Barium cuprates and Y₂O₃ react finally above 750°C, giving YBa₂Cu₃O_{2-y}.

Keywords: Barium cuprate; HTS; Phase; Superconductor; Synthesis; TG

1. Introduction

Since the discovery of Y-123 superconductors, there has been a continuing interest in identifying the phases which appear in the course of preparation of the final compound. Isothermal thermogravimetry of the mixture Y_2O_3 , BaCO₃, CuO in the temperature range $860-950^{\circ}$ C reveals various nonstoichiometric phases of general composition $YBa_xCu_3O_y(BaCO_3)$, [1]. In a study of reaction mechanism by simultaneous TG, DTG and DTA using the same mixtures, Gadalla et al. [2] observed several steps in the formation of Y-123. In separate experiments, the mixtures were reacted at 800, 850, 900 and 950°C. It was found that $BaCuO₂$ and BaY_2CuO_5 were formed before the formation of Y-123. Parkin et al. [3] postulated that the two phases were formed in disproportionation reactions on cooling the

* Corresponding author.

0040-6031/95/\$09.50 © 1995 - Elsevier Science B.V. All rights reserved *SSDI* 0040-6031(94)01940-I

samples. The final reaction on heating the mixture of Y_2O_3 , BaCO₃ and CuO was ascribed to the decomposition of $BaCO₃$, with the formation of a perovskite structure [4]. Oxygen uptake to give $YBa₂Cu₃O₂$ takes place mostly during cooling [51.

In the binary BaO-CuO system, a number of different compounds were identified. BaCuO₂ was prepared at temperatures between 800 and 900 $^{\circ}$ C [6-8]. Barium cuprate with an excess of oxygen, $BaCuO_{2+x}$, was prepared at various partial pressures of oxygen [9-12]. BaCuO_{2.5} was obtained by heating a mixture of BaO₂ and $Cu(NO₃)₂$ in air at 580°C [6,13]. Recently, we prepared three crystallographically different phases of general composition $BaCuO_{2+x}$ ($0 < x < 0.5$) by reacting CuO and BaO, under various experimental conditions [141. Barium-rich and copper-rich phases have also been reported in the BaO-CuO system. Ba₂CuO_{3+x} and $Ba_3Cu_5O_{8+x}$ were prepared at 950°C in air [15]. The compound formulated as $Ba_2Cu_3O_{5+x}$ [16] obtained below 800°C has an X-ray diffractogram similar to that of BaCuO_{2.5} [6]. The high-temperature form, prepared at 940° C, could be indexed with a tetragonal unit cell [16]. X-ray powder data on $Ba_2Cu_3O_{5+x}$ obtained by Thompson et al. [171 have shown that the two forms are structurally related depending on x. For both, incommensurate modulation has been observed.

There is still much uncertainty regarding the formation and composition of the phases that appear in the course of preparation of Y-123. Studies of the final stage in the temperature range $800-1000^{\circ}C$ [16] and of oxygen uptake [17] have been carried out, but no data are available on low-temperature reactions.

This work is a continuation of our recent interest [141 in investigating barium cuprates. We have monitored here especially the early stages in the preparation of Y-123 superconductor in order to determine the succession of chemical reactions in the system and the relative stabilities of the corresponding phases.

2. **Experimental**

Reactive, amorphous CuO was prepared by low-temperature thermal decomposition (300°C, 10 h) of $CuC₂O₄$. Reagent-grade BaO₂ was purified to remove traces of BaCO₃ before use. The starting $BaO₂$ was heated in argon to 1400°C and cooled to 600°C. The atmosphere was switched to pure oxygen and maintained at 550°C for a few hours. $BaCuO_{2.36}$ and $BaCuO_{2.5}$ were prepared as described elsewhere [14].

The mixtures $Y_2O_3 + 4BaO_2 + 6CuO$ and $Y_2O_3 + 4BaCuO_2 + 2CuO$ were thoroughly homogenized in an agate mortar in an argon-filled dry-box. The reactions were followed by thermogravimetry (TG) with a Mettler TA 2000C thermoanalyzer in a dry air atmosphere free from $CO₂$. The samples, in alumina crucibles, were heated at rates of $2-4$ K min⁻¹ to temperatures between 330 and 930°C and then maintained isothermally for various time periods. Reductive TG measurements were performed in a mixture of 85 vol% of Ar and 15 vol% of H_2 . X-ray diffraction patterns were recorded with a Guinier de Wolff camera using Cu K_{α} radiation and NaCl as an internal standard.

3. Results and discussion

A TG curve for the mixture $Y_2O_3 + 4BaO_2 + 6CuO$ and the results of isothermal treatments are presented in Fig. 1 and in Table 1 respectively. The sample begins to lose mass at $\approx 330^{\circ}$ C on dynamic heating. After isothermal treatment of the mixture at 330°C only the initial substances could be found in the X-ray powder pattern. Pure BaO₂ begins to decompose at $\approx 530^{\circ}$ C [14]. The low temperature for the start of the reaction in the mixture $Y_2O_3 + 4BaO_2 + 6CuO$ could probably be ascribed to the catalytic effect of active CuO. Similar effects were found for the mixtures $BaO₂ + CuO$ [14] and $Y₂O₃ + BaCO₃ + CuO$ [1], although not explicitly attributed to catalytic consequences.

Fig. 1. TG curve for the mixture $Y_2O_3 + 4BaO_2 + 6CuO$.

Table 1 Isothermal treatment data of mixture $Y_2O_3 + 4BaO_2 + 6CuO$

Temp. in $^{\circ}$ C	Time in h	Phases $(X-ray)$
330	0.5	Y_2O_3 , Ba O_2 , CuO
500	0.5	Y_2O_3 , BaO ₂ , CuO, BaCuO ₂₅
580	0.5	Y_2O_3 , BaO ₂ , CuO, BaCuO ₂₅
750	-	Y_2O_3 , BaO ₂ (weak), BaCuO ₂ , BaCuO ₂₅
750	0.5	Y_2O_3 (weak), BaCuO ₂₅ , BaCuO ₂ , BaCuO _{2+x} , Y-123
850		$BaCuO2, Y-123$
850	8	BaCuO ₂ , Y-123
930	6	$Y-123$

After isothermal treatment of the reaction mixture at 500°C for a short period, the lines of $BaCuO_{2.5}$ appeared in the X-ray powder pattern in addition to those of the initial oxides. At 580°C the result was the same, although with stronger lines for $BaCuO_{2.5}$.

At 750 \degree C BaCuO₂ is formed, which can be considered as a decomposition product of BaCuO_{2.5} [14]. A small amount of unreacted BaO₂ could still be identified. Just a short period of isothermal heating sufficed for all barium cuprate phases to appear, together with the Y-123 superconductor, which shows weak lines. Y_2O_3 remained the only oxide not completely reacted.

Carrying out the reactions at 850°C for two different time periods resulted in the formation of BaCuO, and Y-123. Weaker lines for BaCuO, and stronger ones for Y-123 were found in the X-ray powder patterns after prolonged heating. The lines of BaCuO₂ disappeared finally at 930° C. As the reactions giving intermediate

Fig. 2. TG curves of BaCuO_{2+x} phases in a reducing atmosphere (85 vol% Ar, 15 vol% H₂).

Fig. 3. TG curve of the mixture $Y_2O_3 + 4BaCuO_2 + 2CuO$.

phases overlap, the steps on the TG curve (Fig. 1) at $\approx 1.0\%$ and 1.5% mass loss do not correspond to well defined stoichiometries.

For the sample obtained isothermally at 850° C (3 h), a further TG curve was recorded. An uptake of oxygen at lower temperatures and a release at higher ones was observed, as already known for Y-123 superconductor [17].

The phases of general composition $BaCuO_{2+x}$ ($0 < x < 0.5$) obviously appear prior to the formation of Y-123. The stoichiometry of the phases prepared as already stated in [14], together with their relative stabilities, were determined by recording the TG curves in a reducing atmosphere (85 vol[%] Ar, 15 vol[%] H₂) as shown in Fig. 2. The two compounds containing $Cu(III)$ begin to react at lower temperatures, and the second part of their TG curves, which could be ascribed to the reduction of Cu(II), is similar to that of $BaCuO₂$.

Because $BaCuO₂$ is the most stable ternary intermediate cuprate in the system, it was reasonable to use it as a starting material.

The TG curve for the mixture $Y_2O_3 + 4BaCuO_2 + 2CuO$ recorded in air is shown in Fig. 3. There is a slight uptake of oxygen at lower temperatures, owing to partial formation of BaCuO_{2.5} and BaCuO_{2+x} (x < 0.5); however, the reaction giving Y-123 begins above 700°C. After reaching 900°C the sample was kept isothermally for 3 h to complete the reaction. On cooling the sample slowly, an uptake of oxygen was observed down to 370° C, giving a typical Y-123 compound.

4. **Conclusions**

The synthesis of Y-123 superconductor from the binary oxides gives first the intermediate phases $BaCuO₂$, $BaCuO_{2+x}$ (x < 0.5) and $BaCuO₂$, which are formed at lower temperatures. The formation and decomposition reactions of intermediate cuprate phases and those of $BaO₂$ overlap, so that several phases coexist below 750°C. BaCuO₂₅ and BaCuO_{2+x} (x < 0.5) decompose to form BaCuO₂, which reacts afterwards with Y₂O₃ to give YBa₂Cu₃O_{7-x}.

References

- [1] N. Brničevič, M. Paljevič, Z. Ružič-Toroš, M. Tonkovič, A. Kashta, M. Prester and E. Babič, Solid State Commun., 66 (1988) 633.
- [2] A. Gadalla and T. Hegg, Thermochim. Acta, 145 (1989) 149.
- [3] S.S.P. Parkin, E.M. Engler, V.Y. Lee and R.B. Beyers, Phys. Rev. B, 837 (1988) 131.
- [4] T. Ozawa, Thermochim. Acta, 133 (1988) 11.
- [5] K. Leroy, J. Mullens, J. Yperman, J. Van Hees and L.C. Poucke, Thermochim. Acta, 136 (1988) 343.
- [6] M.M. Arjomand and D.J. Machin, J. Chem. Soc. Dalton Trans., (1975) 1061.
- [7] H.N. Migeon, F. Jeannot, M. Zanne and J. Aubry, Rev. Chim. Miner., 13 (1976) 440.
- [8] R. Kipka and H. Miiller-Buschbaum, Z. Naturforsch. B, 32B (1977) 121.
- [9] H.N. Migeon, M. Zanne, F. Jeannot and C. Gleitzer, Rev. Chim. Miner., 14 (1977) 498.
- [IO] M.T. Weller and D.R. Lines, J. Solid State Chem., 82 (1989) 21.
- [11] L.A. Klinkova, I.V. Soikina, I.I. Everkova, S.A. Everkov, N.I. Ganovič and S.A. Sevčenko, Inorg. Mater. (Engl. Transl.), 25 (1989) 1916.
- [12] S.A. Hodorowicz, W. Lasocha and H.A. Eick, J. Solid State Chem., 77 (1988) 148.
- [131 U. Straub, D. Krug, C. Ziegler, D. Schmeisser and W. Gopel, Mater. Res. Bull., 24 (1989) 681.
- [14] S. Petriček, N. Bukovec and P. Bukovec, J. Solid State Chem., 99 (1992) 58.
- [15] D.M. DeLeeuw, C.A.H.A. Mutsaers, C. Langereis, H.C.A. Smoorenburg and P.J. Rommers, Physica C (Amsterdam), Cl 52 (1988) 39.
- [161 I. Halasz, V. Fulop, I. Kirschner and T. Porjesz, J. Cryst. Growth, 91 (1988) 444.
- [171 J.G. Thompson, J.D. FitzGerald, R.L. Withers, P.J. Barlow and J.S. Anderson, Mater. Res. Bull., 24 (1989) 505.